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Abstract

The problem of instantaneous threedimensional pressure waves inside of railway
tunnels has been investigated theoretical and experimental. These waves do evolve
whenever a pressure wave passes the train ends.

It is shown that such pressure waves can exist if the length of the passing wa-
vefront is of the order of the tunneldiameter. They can either move in radial or
tangential direction along the tunnel-axis. These higher mode waves travel slower
than the primary wave thus introducing a dispersive effect. It is shown that in order
to measure the radial moving waves a pressure transducer should be placed at the
center of the cross-section of the tunnel. To measure waves moving in tangential
direction the position for measurements should be the top of the tunnel (§) or (%)
depending if single track or double track tunnels are to be investigated. For a tunnel
of 14 m diameter the sampling frequency for such measurements should be about
160 Hz. The level of these higher mode waves can be of the order of the reflected
wave.

The most important outcome of this work is, that such waves do neither transport
mass nor momentum. Therefore such waves do not introduce an error in the common

used one-dimensional theories.

Nomenclature

Latin Symbols

undisturbed sbeed of sound, speed of sound, dimensionless speed of sound

ag, a*, a

dpmn, Ggmn phase velocity, group velocity of mn-mode

b ratio of train radius to tunnel radius

¢ integration constant

Dy tunnel diameter

f, 9 seperation functions for ¥

foas maximum in the spectrum of time dependent transformation
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Lt

i

Jm

Mo

knxn
m,n

P, P, P
Pf, Pfc, Pres
q"l"
r',r

Ta

S

Sp

seperation functions for ®

tunnel length

V-1

Bessel function of integer order m

Measure for the strength of the higher mode waves

wave number . .

index for eigenvalues in tangential and radial dl.rect.xon'

pressure, undisturbed pressure, dimensionless differential pressure
filtered pressure, filtered pressure at center, reflected plane wave
Qmn = Ef,krm .

coordinate in radial direction, dimensionless coordinate
dimensionless radius of inlet tube

dimensionless area of tunnel cross-section

dimensionless area of idealized piston moving in tunnel

time, dimensionless time

dimensionless center of time for time dependent transformation
fluid velocity in radial direction, dimensionless fluid velocity
integration coefficients for ®pmp .

fluid velocity in tangential direction, dimensionless fluid velocity
speed of train, dimensionless speed of train

fluid velocity in axial direction, dimensionless fluid velocity
window function for time dependent fourier transformation
Neumann function of integer order m

coordinate in axial direction, dimensionless coordinate

dimensionless length of wavefront

coordinate in tangential direction

velocity potential

coefficient of the infinite sum of the solution of ®
seperation function for ¢

eigenvalue, isentropic exponent
orthonormalization coefficient

density, undisturbed density, dimensionless density
fouriertransformation of *
timedependent-fouriertransforma.tion of x
othonormalized form of

dimensionless frequency

mean value of - per cross-section

1 Introduction

One possible origin of discre
tuations in tunnels is, amon

represented.
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The conventional method of calculating the flow around the train ends (see (6]
or [7]) inside a tunnel is to assume infinitely thin, one-dimensional discontinuities.
The idea behind this is, that the region of a three-dimensional flow is small com-
pared to the train and tunnel length scales. While this approach seems - from the
point of simplicity - very appealing, there remains the question in how far such a
simplification is justified. Recent model- [8] and full-scale-experiments [9] showed
that three-dimensional pressure waves do occur.

Due to this knowledge a research program has been started on the influence of
three-dimensional flow regions inside of railway tunnels. In this paper attention is
given to the developing three-dimensional flow due to the passing of a pressure wave
over a train end.

Because of the difficulties, that arise with this problem, several simplifications
for the theoretical considerations of the problem have to be made. We will focus
our attention on the first order wave phenomenas.

As a further simplification we will regard the train speed to be small compared
to the speed of sound, so that we can neglect it. This means, that the propagation
of a pressure wave around the head of a train at rest in a tunnel is investigated.

The above simplifications are of course quite restrictive, but, as numerical si-
mulations (which will be published in a Dissertation by Ottitsch, TU-Wien) have
shown, it is still possible to get agreement between theory and experiments. We are
quite confident, that this work offers a good model for the above described three-
dimensional real flow. It helps to understand the advantages and disadvantages of
the conventional method of calculating the flow around train ends.

2 Theoretical Considerations

2.1 Basic Equations

Figure 1: Geometry of problem

The present problem deals with the simulation of the fluid flow in the region of the
train ends due to passing pressure waves. As our interest is focused on multidimen-
sional pressure waves in the vicinity of train ends it seems quite obvious to neglect
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de walls for such small scales. Furthermore as

heat and mass transfers along the si _ .
| length there is no need to include

frictional losses are small over a scale of the tunne :
these effects in the current model. A fairly good approximam.on of t.hc tunnel and
train geometry is a semi-circular tube with a semi-circular r:y]md'r:r (i. e. %he train)
This model allows rather simple analytical solutions, sho-

moving inside (see fig. 1). ¢ :
e-dimensional waves. We would

wing the principle properties of the developing thre ;
like to mention, that many concepts of the following work are to be found in [1].
We start our theoretical considerations assuming a compressible, isentropic, cy-
lindrical flow with small pressure fluctuations. (In the following the asterix above a
variable means, that this is a variable with a dimension. Whereas a variable with-
out an asterix means, that this variable is dimensionless.) The coordinate-system is
moving with V., the train speed. Thus we will get relative velocities. But, as long
as the train speed is small compared with the speed of sound, we can neglect these
differences for a first order calculation. By introducing the following dimensionless

quantities
u® v* w’ _ S
= aF = = = - r=ops %= pr
¥ .“6. v ag w a D3 D
t'a Ve p'—p?' _ £ = @°
= -0 = — o == = a = =
t Df Vz ag P AL P Po 2q9

it is possible to derive the dimensionless momentum- and continuity-equation like
shown in [2].

g
Ou  Ou Ou du v? 1 ~ dp
b T i ARl i RO 1
6t+u6r+vr&p+(w+vz) dz r (1+Kp) ar (1)
1
dv v ov ov  uv 1 =~ dp
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at-+-uar_+ura"{’+(w+Vz)az-i- - (]+np oo (2)
ow ow dw ow 1 %ap
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3t+u3r+vraw+(w+v)3z (1+xp) 9z (3)
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du v Ow u
ot or rdy waz - z-é-; — (1 +xp) [E } (4)

M P
If one restricts these equations to small scales (2 of the order of several tunnel
diameters) and to small disturbances (V, and p < 1) they can be linearized which

yields:
ou  dp
" " or ()
a‘U ap
F _% (6)
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TR (7)
O _ (0w, 0 0w u
ot (Br + rdp + 0z + 1') (8)

For the two-dimensional case a simple finite difference method (i. e. McCormick-
scheme see [2]) has been implemented which allows to solve the above equations
numerically. In a Dissertation by Ottitsch (under preparation TU-Wien) the pre-
sent theory is checked with such a numeric simulation. But this would go beyond
the scope of the present paper. Here we just like to mention, that the numerical,
theoretical and experimental results correspond well with each other. Thus one can
be confident that the describred theory is valid for the considered problem.

2.2 'Wave- and Helmholtz-equation

It is possible to simplify the above equations further. By introducing a potential ¢

_ 0% _ 09 L _ _dd
U=Tr YTide YS9 PTTa

the well known wave equation can be derived.

10 (00) &0 30 o _
ror\'ar) T80t " 822 o8F

By means of the Fourier-transformation (and the inverse Fourier-transformation)

0 (9)

b (w) =L 2,0 () etdt (2) =[5, (w) e dw
and the seperation of variables
(bmn = \I'rrm (7‘, 50) * Ho.n (z, t)

one gets from (9) periodic solutions for Hpn

Hyn (w, 2) = % WKt — gdizkmn (10)
and the Helmholtz-equation for ¥y
19 ( d¥ 020, 5
—— mn 2y =0 .
ror (r or ) 22 + Kmn (11)
with
W = Kn + K (12)

B
8.
E
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ther with the boundary conditions for W,,, equation (11) leads to an Eigen-

f Toge ) , .
an infinite number of possible solutions with different &,

value-problem. There is

for each solution. o -
This shows, that, besides the plane fundamental wave propagating in the axial

direction of a duct, there do exist waves which are reflected back and forward from

the duct walls, as they propagate along the duct. These waves cause a nonuniform

pressure distribution in a cross-section of the duct.
Equation (12) shows, that there exists a cutoff-frequency for each mode. In the

power spectrum of a passing plane wave are certain driving frequencies. F(I)r driving
frequencies above the cutoff-frequency a mode can be excited, propagating along
the duct with almost no attenuation. For driving frequencies less than this km, in
equation (10) becomes complex and therefore eEtkmnz Jeads to a strong attenuation,

Such a mode cannot propagate as a wave.

2.3 Solution for a semi-circular duct

The above equations have to be solved for a duct with a semicircular cross-section.
In a duct with rigid walls, the fluid velocity normal to the surface must be zero,
which gives the following boundary-conditions:

oW (r=0.5) . v . 1] _ 3V (p=0) __ AV (p=7) __
o =0 lim_o (E sinp + ;5 cos ga) =0 e 0 e = 0

This boundary conditions have to be applied if there is no train in the tunnel.
In the other case, where there is a train in the tunnel, the condition for ¥ in the
middle of the cross-section has to be changed to:

AV (r=b) _ 0
or -

With the separation of variables V,,,, = fi. () * gm (@) the solutions are:

Soun (1) = [Jm ("mnr) +aln ("mﬂr)] (13)
i () = ccsrmp (14)

Where J,, and Y,, are the Bessel- and Neumann—function of integer order m
respectively. For the empty tunnel ¢; = 0 and in the other case, where there is a
train of radius b inside the tunnel, ¢; is calculated by:

— _ Jo(rmnb
a = "Y,;,{:,,,,.bg
The above functions form an orthogonal function system. The solution of equa-

tion (9) is calculated by adding up all single solutions and doing an inverse Fourier
transformation:
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b= Z (b”lnr.' = Z ] Umn ‘/mn (w) * \i’mnei(km":_w”dw (15)

m, n=0 my, n=0""

W, 1s the orthonormalized form of W,,,,:

\bn111 = —\Dm,‘
SA i (16)
with for m > 0
: C 127 m? i m?
q’fnnd‘s = Anm--c" = — 2 _ 2 = _ 2 2
[L 4 [(1 K‘-rznn) m (h"""') (b h";z,m.) f"‘" (Km"b):,
(17)
and for m =0
2 g0 . 12x 5 "
/L \I’On.d-s = AgnS = T [fOn (P\'-On) —-b fOn (NQ,L())] (18)

The coeflicients U,,, represent the boundary conditions (without the frequency
dependent part) and V,,, follow from the initial conditions and the frequency depen-
dent part of the boundary conditions. The analytic calculation of these coefficients
is a quite complicated problem. In the following we will only need the assumption
that V,,,, changes smoothly above the cuttoff-frequency of a given mode.

2.3.1 Empty tunnel

For the empty tunnel the values of &,,, = 27¢,., follow from the boundary conditi-

ons:

qunfm—l (Wq"m) e mfm (quﬂ)

Some values of ¢,,, are listed in the following table:

[m] n=0 [ n=1 [ n=2 | n=3 |
0 0.0 |1.2197 | 2.2331 | 3.2372
1 | 0.5861 | 1.6970 | 2.7140 | 3.7274
2 109722 | 2.1346 | 3.1734 | 4.1921
3 | 1.3369 | 2.5528 | 3.6128 | 4.6441
4 1.7 2.9
5 2.0
6 | 238
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As expected, the fundamental mode (0, 0) has a zero characteristic value and
thus is a plane wave. The cutoff frequency for the (m, n)-th mode is g¢,,. Thus
the first modes to become propagational are (1, 0), then (2, 0) both of which are
waves which move in a spiral path and only after these two tangential modes the
first radial mode (0, 1) starts to propagate.

2.3.2 Tunnel with train

[n the case, where a train is inside the tunnel, the boundary conditions give the
following equation for the Eigenvalues ¢,,,,,:

J'r“ (’T‘Ilrm) Yn’; ("T(]mnb) -Y (T”l'nm) e (7”:'::“1[’) =) (20)

m m
bis the ratio between train and tunnel radius. In the following table the first few
radial modes are listed for three different values of b, b = 0.333 is the value which
would be appropriate for a modern german-train-tunnel configuration.

Eb |n] qou | b |n] qon [ b [n j Gon J
1] 1.326 1| 1.562 1| 3.515
0.181 | 212512 0.333 2 3.036 || 0.714 | 2 | 7.008
313.714 3| 4.525 31 10.505
41 4.924 416.019 4 | 14.004

2.4 Dispersion of the higher modes

The phase velocity of the mn-th mode is:

w 1
Qomn = % = \/ ‘ >
mn 1 . (ﬁﬁ:‘“‘)

and the group velocity agp, is:

Ok \ Kmn\? 1
= (Lmn)  _fp ((Fme) 99
agm"—( Ow ) =y! ( w ) %)

Qomn

Below the cutoff-frequency the phase and the group velocities are imaginary,
which means that such a wave cannot propagate. Slightly above the cutoff-frequency
the phase velocity is large and real (the group velocity is small), and as w approaches
infinity a,, approaches 1 from above and ay approaches 1 from below. A mode, that
is excited in the range of the cutoff-frequency, moves only slowly along the tunnel
axis. Just the highfrequency components of the mode propagate with approximately
the speed of the wave front of the signal. This means that the maximum of each
mode in the frequency domain will move to higher frequencies as the wave travels
along the duct as will be shown in the next section.
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2.5 Timedependent-Fourier-Transform

The pressure field, that develops after a compression-wave has passed a train in a
tunnel, consists of the primary wave and the higher modes, which propagate inside
the tunnel. To analyze such an instantaneous, dispersive signal it is necessary to
introduce the Timedependent-Fourier-Transform

ks, W = 51— fm f (@) wy (t —t;) exp (iwt)dt (23)

- -0
If one uses this transformation for each coefficient .. of equation (15) it is
possible to show how the maxima in the frequency spectrum of each mode move to
higher frequencies along the tunnel-axis.
The transformation of the coefficient ®,,,. in equation (15) yields:

3. = 1 o o : 1} 1} .
Drine (tl-, w) = ‘Danm“E /_OQ -[-oo o (wl) ex(kmn(w )z—w t)dw'wf (t _ tl) e “tdt
(24)

and after integration over ¢:

“ -

Q)mnc (th w) = \Ilanmn /OO ‘J)j (u . wl) eikmn(w')zei(w—w')h an (wt) du’ (25)

where 1y is the fourier transform of the window function w;. By choosing the
window function w; as a smooth, symmetric function which spreads out over a
large time period and has its maximum at wy (0) one gets only a poor resolution
in the transformed time-domain, but a rather good resolution in the transformed
frequency-domain. This of course means that w; vanishes outside the region v’ = w,
which permits us to concentrate on this region when evaluating equation (25).
This assumption allows the use of a first order expansion for kp, (w') in equation
(25):
w —w
o () = Ko () + e (26)
1 (22)
If the initial Vjn (w') changes only slowly in the region of w, which means that
Vi has no dominant periodic parts in the time domain, we get from equation (25):

én-mc (th w) = ‘i’anmann (w) e‘-km"(‘v)zwf (tl - = ) (27)

Qgmn

If we now further assume, that the coefficient V»,, which describes the excitation

of the mode-mn, behaves smooth above the cutoff-frequency, then equation (27)

shows that the frequency fla® where each mode has its maximum is a function of

z (the distance from the train end) and #; (the region of the transformation).

TIRTTES, § - T O
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O [IOEF il = —— 2 (28)

mn ~—_ oomn N2
1- (%)

guish between frequencies, that occur due to the
hese frequencies change with the distance from
ich occur due to the experimental setup. Each
lated to a single mode Kpn.

Therefore it is possible to distin
(Liree-dimensionality of the flow (t
the train ends) and frequencies, wh
local maxima in the frequency domain can be re

2.6 The number Mo as a measure for higher mode waves

s the higher mode waves cannot exist beyond

a certain cutoff-frequency. Therefore it seems to be obvious to filter a measured
signal with a lowpass filter whose cutofi—frequency is substantially beyond the cutoff-
frequency of the first mode and then substract this signal from the original signal.
This new signal p; will represent the higher modes outside the region of the wave
front. As most of the higher modes will stay beyond (see section 2.5) the front, it
should be possible to analyze the higher modes with this method.

The reason why this method and not a highpass—filter was chosen
this method an overshooting of the digital filter could be seen easily.

In the experiments a lowpass—Butterworth—filter of order ten and a cutoff-fre-
quency of 75 % of the cuttoff-frequency of the first radial mode has been used.

A good measure for the degree of three—dimensionality is the time-averaged
squared pressure signal averaged over the cross-section. Therefore the ratio between
this value and the squared value of the pressure of the reflected one-dimensional
wave pres has been defined. In the following the brackets (-) means, that it i1s the

mean value over the cross-section.

As has been shown in the above section

is, that with

Mo = 4| =5~ (29)

It can be shown (see [4]) that under the assumption, that the tangential modes
are small, it is mainly the first radial mode which contributes to this value. (If the
maxima in the power spectrum of the second radial mode is 20 % of the maxima of
the first radial mode, then this mode contributes only 2.2 % to the value of Mo.) For

this first radiimode the ratio of (p}) and the corresponding mean value measured
in the centre p?_ is Aoy as shown in [4]. Neglecting higher mode terms we can write:

AmP2
Mo = ,l fe

. The above assumption has been justified by spectral analysis of the measured
signals. The above equation (30) can be evaluated by calculating the standard
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deviation of a filtered measured signal. The height of the reflected pressure wave
pref can be calculated using the mean value of the o i
: : ncom
one-dimensional reflection coefficients. ing wave and the usual
A va'}uc of Mo = 0‘..2 could thus be interpreted in the way, that there are pressure
fluctuations of appmxnnately 20 % superimposed on the plane reflected wave.
. In t.he following section all experiments have been compared with each other
with this measure.

3 Model experiments

To check the validity of the above theory model experiments have been carried out.
Ifl these experiments the pressure transients inside a model tunnel where measured
51mul.t.aneously at up to eight different points. The whole experimental setup is
described in detail in [4] and a Dissertation by Ottitsch (to be published TU-Wien).

3.1 Experimental apparatus

In [5] Pope presents a good review of the various methods for the reduced scale
modelling of the flow in tunnels. It seems that the majority of the reduced scale
facilities have focused their attention on the global flow inside the tunnel model. To
achieve this goal much emphasize has been given to the problem of how to move
the trains inside the tunnel. But, to the knowledge of the author, there has only
been a minor interest on local effects. With regrad to localized effects the Reynolds
number and the Mach number of the models are not so important. There is less need
to model closely the speed of the train, which greatly simplifies the construction of
such a test facility.

But when investigating local effects some attention must be given to the fact that
the study of localized flows need high sampling rates for the data acquisition. Thus
it is the maximum achievable sampling rate which gives a minimum for the scale
of the test facility. Due to the instrumentation at our institute (see 3.2) we have
chosen a tunnel diameter of 0.21 m, which correspondends to a full scale diameter

of 15.1 m for a scale of 1:72.

The principal setup of the experimenta
pressure wave generator produces a pressure wave, which propagates along the first

tube. At point 1 this wave is divided into two waves of equal intensities propagating
through the second tube (see 3.3 for an explanation). At point 2 these pressure waves
enter the tunnel simultaneously, so that an almost plane wave starts propagating in
the tunnel section. The reason for this special arrangement is discussed in section

3.3.

| apparatus can be seen in figure 2. A

Generated by CamScanner



162
- press’urc-lrgnsducer .
’ # i

#: ~

pd

T = =

2 ampliﬁcr[ | j[
lllr

[~ antialiasing-filter
trigger

111

|
—
AD-converter

tube

PC

pressurc-wave generator

C J!
]

Figure 2: Principal setup of experiments

3.1.1 The pressure wave generator

Che institute has a facility for generating pressure waves (see figure 3). A cable is
accelerated very rapidly by means of an electric motor in connection with an electro-
magnetic clutch-brake system to constant speed. A catch fixed on the cable drives
a bolt which impacts a very light piston, that is accelerated nearly instantaneously.

catch guidingways lightbarrier rubbercable tube
N Y E7d /
A HI Z

" <
\\ % /
1 zzm@ N
N
PRL Ll ool e

DI ] CINY
> ] va piston

bolt cable

motor+
clutch—
brake — systgm

Figure 3: Pressure wave generator
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This causes a pressure wave propagating inside the small tube (see figure 2).
When the bolt passes a lightbarrier the clutch-brake system stops the bolt. Depen-
ding on the size of the driving wheel for the cable and the speed of the motor it is
possible to get differential pressure waves between 0 - 1400 Pa in the tunnel section.

3.1.2 The tunnel model

The tunnel model has a diameter of 0.21 m and a length of 7.5 m. It has been made
of 2 mm thick metal sheet. The cross-section has the shape of a semicircle. The
bottom is made out of two 20 mm thick coated chip boards. The tunnel model does
not take account of the ballasted track, which is to be found in most modern tunnels.
It is known (see [3]) that such a ballasted track affects the shape of the propagating
pressure waves. But, as the primary goal of the experiments is the understanding
of multidimensional pressure waves, there was no need to model the track. During
operation it turned out, that the tunnel section was not tight. Therefore a special
packing rubber band had to be used for the sealing between the metal sheet and the
chip board. Oscillations of the metal sheet were detected with accelerometers even
before a pressure wave passed a measuring point. The effect of these oscillations
was neglected. According to section 2.3.1 the cutoff-frequencies for the first two

tangential and the first two radial modes are 957 Hz, 1588 Hz, 1992 Hz and 3647
Hz respectively.

3.1.3 The train models

The train models are made out plexiglass-tubes that were cut in half. The bottom
is made of a plexiglass—plate. The length of the train models is 4 m. Three different
diameters (38 mm, 70 mm and 150 mm) were chosen for the trains. During the
experiments it turned out, that the shape of the pressure wave, which propagated
along the train, changed, caused by the vibrations of the plexiglass-plates. To mini-
mize this effect all train models were filled with gypsum. However, it is interesting to
note, that this effect does happen and that it leads to an one-dimensional distortion
of the pressure wave. In reality similar effects will occur due to vibrations of the
train walls and mass transport in the train. Therefore it is recommended that an
investigation of the change of the shape of a pressure wave propagating between a
train and the tunnel wall should be undertaken. For the train model with a diameter
of 70 mm a train nose was made out of PVC whose cross-sectional shape was similar
to the shape of an ICE train nose. To get an estimate, in how far the real geometric
boundary conditions have an influence on the problem, a quadratic beam (60 mm)
made of wood was also investigated.
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3.2 The instrumentation

-093 pressure transducers were used. These trans.
00 kHz. Special differential amplifiers have
ing factor of 400 and an offset correctiop.

For all measurements Kulite XCW
ducers have eigenfrequencies ?f about 1]-f

1 the institute with an amphly
E)f(;f: :Ltlti[l)tu?tsignal of these amplifiers was passed through an analog-filter whose
cutoff-frequency could be adjusted to ensure a propper nyquist frequency for the
AD-sampling. For the AD-sampling a DT—'ZS‘ZI—F-S- DI carﬁi was .used together wi},
the software package Global Lab by Data-Tr.anslatlon. With this AD-card a cop.
tinuous sampling rate of 130 kHz can be achieved on up to 8 channels. Thus eac},
channel could be sampled with at least 16.25 kHz. Every c}?anne] has an accuracy
of 12 bit. To minimize drift effects the whole instrumentation was powered on ja
least a night before an experiment. Usually it was not p(.)werejd off for several days,
Before each experiment the offset was corrected by a calibration.

With this instrumentation it is possible to analyze pressure waves down to 5
Pa in the time-domain. The noise level had a standard deviation of approximately
2 Pa. In the frequency domain pressure frequencies as little as 0.5 Pa could he
distinguished.

3.3 The tunnel inlet section

We started our experiments with a test setup with only one tube connecting the
pressure generator and the model tunnel (compare figure 2). At point 2 multi-
dimensional pressure waves do evolve due to the big change in the cross—sectional
area. The amplitudes of these pressure waves will certainly be much higher than
those which evolve due to the relatively moderate change in cross-section caused by
a train. Therefore we changed this first arrangement according to the results of the
following theoretical considerations.

By assuming that the small inlet tube at the entrance has an effect similar to a
piston moving with a frequency w, it can be shown (1] that the coefficients Uy, in
equation (15) for such a piston can be calculated by an integration over the area of
the piston. If one evaluates this for a circular piston of radius T, moving inside a

semi-circular cross-section and assumes, that the initial distribution Wy is constant
over the cross-section of the piston one gets:

1 1 THra reote(r)
Unn = R =
SAmﬂ /Sp ‘I»'o‘;[J Td?"d‘P SA / / ‘I'mnrdrdl,ﬂ (31)

mn JT—ra Jpg—y(r)

with

— ri42_p2
w (f‘) = arccos T:——"A

In the above equation z and g define the position of the centre of the piston
relative to the centre of the tunnel. Equation (31) has been evaluated numerically.
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Obviously by using two pistons at ¢y = T and @y = if one can ensure that all
antisymetric Unin = 0 will be zero. Therefore the first mode that can propagate
is mode (2,0). If one chooses the position x of the piston so, that U, becomes
zero, one can ensure that only higher radial modes can propagate. Therefore we
have chosen two inlet tubes in these optimized positions. Thus the developing wave
should be quite plane. The main part of the energy of the higher radial modes is
concentrated in the tunnel centre. The higher tangential modes have much of their
energy centered at 7 = 0.5 and ¢ = 0, ¢ = 7. Therefore these modes can be damped
easily with small stripes (30 10 + 1000 mm) made of cellular material placed in the
above described regions. With these measures it is possible to get an almost plane
wave with a short wave front.

The pressure rising time (the thickness of the wavefront) could be varied by
cellular material of different lengths placed along the wall. In the experiments three
different values for the thickness of the wavefront € could be achieved (eo = 0.605,
e = 0.76, €2 = 0.835).

4 Results

In the following section we will first focus our attention on the theoretical results,
that can be derived from section 2 and will then look on the results of the experi-
mental work, that has been undertaken.

4.1 Location for pressure measurements, minimum samp-
ling rate

An important result for full-scale or model experiments is, that it is possible (due
to the shape of the Eigenfunctions) to give a recommendation for the position of the
pressure transducers. If the positions in the cross-section are somewhere along the
perimeter then all pressure transducers will give nearly equal signals due to radial
waves. So the conclusion would be that the wave is a plane one, though radial
waves could exist. Additionally at the perimeter the intensity of a radial wave is
less than near the centre. The best position to measure radial waves is the centre of
the bottom. At this point the Bessel-functions have their maximum values.

Of course it is not possible to measure any tangential waves at the centre, be-
cause their Eigenfunctions are zero in this region. Furthermore if the transducers
are located in the region of ¢ = %, ¢ = gf, or ¢ = 7 either the symmetric or
antisymmetric modes cannot be perceived, because their Eigenfunctions have nodes
at this location. If tangential waves are to be detected it is important to distinguish
between a single track and a double track tunnel. For a single track tunnel there
will exist no antisymmetric tangential waves, because the Uy, values of these mo-

s

des will be zero. The best position would be around ¢ = 5. At this location the

S
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lead to substantial distortions in that region. Therefore these Positiong cannotulId
I A i Je

e Close t()

recommended. ' o

Due to the fact, that the cross-sectional area of a train is usually (evey, s doup)
track tunnels) located near the centre of a tu.nne], the U,,,,, values for tallgem,i:]
propagating waves will be smaller than for radial waves.

The sampling rate for pressure measurements at the above describe
should at least exceed double the value of the cutoff~frequency of the hig
to be investigated. Due to our experiments the highest mode, thay will be Perceive
is the third radial mode. For this mode the dimensionless cul,off—[rcqnency is -'}.23721
In a tunnel with a diameter of 14 m the Clll.off—fr(:qll(:ncy off the third radial mod(:
is 79.3 Ha. Therefore the sampling rate should be grater than 160 [, The ﬁrst-

tangential mode that could propagate in such a tunnel has a cutoff-frequency of 14
Hz.

d poingg
hest, Mode

[t is not reasonable to measure in more than one point in a cross

~section, if thege
sampling rates cannot be achieved.

4.2 Conclusion for the onedimensional theory

For a comparison of the outcomes of numerical ca
model of infinitely thin one-dimensional discontii

At the moment let us focus our attention to
For a onedimensional theory we have

lculations with this theory and the
wities refer to [2].

the region near the discontinuities.
to use the mean values over the CTOSS

-section
and from equation (7) and (8) we get
o(p) | B(w)
ot t 5, =0 (32)
O(w) | (p)
_E_--i_ 0z y 83)
Calculating the average values with the solution (15) and regarding that
f[s ¥,dS = 0 m#0and n 0 (34)

we find that only the term
one-dimensional linear theory gi
transport. This is valid for the

(z in the range of 100 tunne]
may have a we

flow in a tunnel on a large scale
nonlinear effects of the higher mode wave
the knowledge we have gained so far the

diameters)
ak influence, However to
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tremendous additional effort for the modelling of multidimensional flow on a large
scale cannot be justified.

4.3 The evaluation method

As an example for the outcome of the experiments and to demonstrate how the
pnumber Mo is calculated one experiment is described in this section. The pressure
rising time was ¢g = 0.605 and the value of b = 0.714. See figure 4 for the expe-
rimental setup. The time when the pressure wave coming from the left (see figure
4) arrived at the head of the train was chosen as the starting time for the pressure
history. In figure 5 one can see the strong intensities of the higher modes.

29D 2.9D
0.5D10.50
chOl / pressure-transducer ch04 ﬂ Chjl—j
v |train-modell 44__)
ch00 ch02 - ch03 head of the train
Figure 4: position of pressure transducers
0.005
0.0045 -
0.004
0.0035 |-
0.003 -
e 0.0025 |-
0.002 |-
0.0015 -
0.001 |-
0.0005 -J i
0 Lisamesswengbowrmatod
-10 -5 0 5 10 15

Figure 5: pressure history in the time domain
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Figure 6: spectral density of pressure signals to the left of the train head

In order to answer the question which modes have been initiated a spectral
analysis is made. The window function wy for each spectral analysis starts shortly
after the passing of the wavefront. See table 1 for the beginning (t.), center (t,,)
and end (2,) of the window function. This long time-window gives of course only a

coarse resolution in the transformed time domain, however it allows a fine resolution
in the frequency domain.

See figure 6 and 7 for the spectral functions of the signal. Due to the coarse
resolution in the time domain, the heights of the peaks give only a rough estimate
of the real amplitudes of the higher mode waves. Notice, that the first radial mode
is much stronger than the second and third radial mode. The third radial mode can
only be seen in

CHO02. Thus the assumption made in section 2.6, that the pressure
should be weighted with ]

e value of Ag; for the calculation of the number Mo, can
be justified,
Notice in figure 7 that almost no higher modes can be perceived in the region
of the train. This has alsc

> been verified in the numeric simulations
by Ottitsch under preparation TU-Wien)
frequency 2.1 on figure 7 cannot be
same pl

(Dissertation

- The small peak at the dimensionless
a higher mode, because its maximum is at the
ace at CHO5 and CHO7, what js in contradiction to the behaviour predicted
in section 2.5. This must be a plane modulat;

on of the propagating wave.
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Figure 7: spectral density of pressure signals to the right of the train head

channel | time-window fmar theory maz experiment
s T te | (0,1) (0,2) (0,3) | (0,1) (0,2) (0,3)
ch00 [ 1.3 11.0 20.75 ] 1.346 2.512 3.642 | 1.34 2.68
ch02 | 3.7 13.4 23.15|1.226 2.286 3.314 | 1.24 226 3.40
ch03 | 9.8 1905 29.25|1.198 2.236 3.240 | 1.24 2.24
ch05 1.3 11.0 20.75
ch07 3.7 134 23.15

Table 1: window for spectral analysis and frequencies of the maxima

of each mode stay near the front of the reflected wave, what can be seen very good

at CHO00.

In order to measure the height of the higher mode waves the Mo-number has to
be calculated. See figure 8 for the filtered signal p; (described in section 2.6). Notice
that the waves near the front of the reflected waves are not higher modes but waves

which represent the high frequency cor
region must not be considered for the evaluation of the Mo-

nponents of the wavefront. Therefore this
number. The standard

deviation of the signal can now be calculated easily. In the next section the Mo-
number of this and the other experiments is listed.
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Figure 8: Pressure history of filtered signals

4.4 The value of the Mo-number in the experiments

As has been shown in the previous sections the value o

f the number Mo gives a

good estimate how stron
the reflected wave.
configurations (
mentioned in this table w

g the higher mode waves are compared to the height of

In this section this value is given in a table for the different
see table 2)

» that have been investigated. The excentric experiment
as done by placing the centre of the train model cross-

section 0.195 diameters from the centre of the tunnel.

train model type
and value of b

without head b, = (.18

without head b, = (.33

without head b; = 0.71

with ICE-like head b, = 0.33

without head excentric b; = 0.33
without head quadratic b, = 0.456

p~ 0.0035

0 € €

Table 2: Configuration of the different experiments

A simple dimensional ana]
wing parameters:
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channel | ¢, ts ty t4
ch00 1.3 11.0 20.75 30.45
ch02 | 3.7 134 23.15 32385
ch03 9.8 19.5 29.25 38.95

Table 3: Times for the calculation of the Mo-number

flat head excentric, b, = (.333

¢ [ Izl || Mo(ti,ta) Mo(ta, ts) Mo(ts, ts) | Mo(ty, t4)

9 || 0.24

0.605 | 2.9 || 0.48 0.28 0.14 0.33
0.5 0.71 0.21 0.15 0.43

flat head quadratic, b, = 0.456
e | lz| | Mo(ti,t2) Mo(ts,ts) Mo(ts, ta) | Mo(t1,ta)

9 | 0.30

0.605 | 2.9 |[ 0.58 0.23 0.13 0.37
0.5 0.71 0.12 0.07 0.42

Table 4: Mo-numbers of the train models inside the tunnel

Mo = Mo((ti, t;), z, b, €)

See table 3 for the different times used for the calculation of the Mo-number.

Since almost no higher mode waves could be perceived in the region where the
train was located, the Mo-number has not been evaluated there. On the tables 4
and 5 the values of the Mo-number of the different experiments are given. It is
interesting to see, that the value of Mo can exceed 1 for steep waves near the train
end. Thus the local pressure fluctuations at such points can be twice as high than
the usual plane reflected pressure wave. The value of Mo decreases with the distance
from the train head and away from the wave front because the higher mode waves
propagate with different group-velocities.

Looking at the values of Mo as a function of the parameter b shows, that the
maximum values are neither achieved with
somewhere in the middle. Since only three different values of b were investigated,
one can only estimate the value of b for a maximum of Mo.
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flat head, b, = 0.181

€ | |z ” Mo(ty,t2) Mo(tz,t3) Mo(i3,14) l Mo(t;,t4)
9 | 0.10
0.605 | 2.9 || 0.20 0.12 0.06 0.14
0.5 | 0.27 0.15 0.09 0.19
flat head, b, = 0.333
€ 1 ‘.‘!l ” I\"IO(t],tg) MO(tz,t;;) MO(tg,t4) ] NIO(t],tq)
9 | 0.54
0.605 | 2.9 || 0.96 0.40 0.18 0.61
0.5 || 1.07 0.20 0.16 0.64
9 | 0.35
0.76 | 2.9 0.72 0.25 0.12 0.45
0.5 || 0.85 0.15 0.13 0.50
9 | 0.13
0.835 | 2.9 || 0.29 0.12 0.08 0.19
0.5 || 0.40 0.13 0.04 0.24
flat head, b3 = 0.714
e | |z [ Mo(ti,ts) Mo(ts,t5) Mo(ts, ts) | Mo(ty, 2s) |
9 || 0.18
0.605 | 2.9 |f 0.29 0.13 0.08 0.19
0.5 || 0.32 0.06 0.03 0.19
9 |l 0.10
0.76 | 2.9 | 0.19 0.08 0.04 0.12
0.5 || 0.21 0.04 0.02 0.13
9 |l 0.06
0.835 | 2.9 | 0.08 0.04 0.02 0.05
0.5 0.10 0.03 0.02 0.06

[CE-like head, b, = 0.333

e | l2] [ Mo(t1,42) Mo(ts,t5) Mo(ts, t4) | Mo(t1, 4)

9 10.29

0.605 | 2.9 || 0.57 0.25 0.15 0.28
0.5 || 0.66 0.17 0.11 0.40
9 || 0.19

0.76 [ 2.9] 0.43 0.18 0.11 0.28
0.5 || 0.51 0.16 0.04 0.31
9 | 0.10

0.835 | 2.9 || 0.20 0.12 0.06 0.14
0.5 || 0.27 0.15 0.09 0.19

Table 5: Mo-numbers of the train models inside the tunnel




However a value of b in the range of the blockage ratios of tunnels for high speed
trains caused the highest relative pressure fluctuations.

A shape typical for modern highspeed train ends (like the ICE) does reduce such
effects.

Conclusion

Higher mode waves may develop due to the passing of a pressure wave over a
train head. The intensities of such waves depend on the pressure rising time of the
oncoming wave, the distance from the train head, the distance behind the front of
the reflected wave and the ratio between the train and tunnel cross-section. The
amplitude of the waves can be of the order of the amplitude of the reflected plane
wave.

But these effects happen only in the empty tunnel. These waves cannot be
detected in the gap between the train and tunnel walls.

The propagation of these waves can be described with a linear theory showing,
that some of the wave phenomenas inside of tunnels can be simulated with linear
models.

Regarding the usual theories for one-dimensional flow there is no need to adapt
them. If the grid size is chosen smaller than the tunnel diameter the pressure
history can be calculated correct (see [2]). However it is not possible to estimate
the intensities of the pressure fluctuations due to higher mode waves. An estimate
of these values can be taken by interpolations on tables 4 and 5. As these waves do
not transport mass or momentum, their existence has no influence on the quality of
the results of one-dimensional flow models.
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